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Received 26 August 1998 and Received in final form 7 December 1998

Abstract. We study the hydrodynamic properties of polymers and more generally self-similar structures
using a new recursion model. The hydrodynamic interaction between monomers is modeled by the stan-
dard Green’s function of Stokes flow in which an ultrametric distance is substituted for the usual Euclidean
distance. This leads to a model where the long-range hydrodynamic interactions and the long-range cor-
relations of the polymer conformation can both be accounted for and yet allow for analytical solutions.
We explore the asymptotic as well as the finite size corrections to the scaling behavior with this model. In
order to compare the results of the present scheme with more conventional techniques a generalized version
of the existing mean field results by Kirkwood and Riseman for the hydrodynamic drag is introduced.

PACS. 61.25.Hq Macromolecular and polymer solutions; polymer melts; swelling – 47.11.+j Computa-
tional methods in fluid dynamics 36.20.-r Macromolecules and polymer molecules

1 Introduction

Extensive theoretical and experimental work has been re-
ported on the hydrodynamic properties of linear polymers
in solvents of varying thermodynamic quality. In dilute so-
lutions the hydrodynamic properties can be characterized
by experimental quantities such as the intrinsic viscos-
ity or the effective Stokes radius, Rh. These properties
can be compared to static properties like the thermody-
namic second virial coefficient or the radius of gyration,
Rg. Comparison of theory with experimental results show
serious discrepancies (see Ref. [1] for a review of the exist-
ing theory and the different attempts to deal with these
discrepancies). An important test for the theory is the de-
pendence of ρ ≡ Rg/Rh on the number of segments, N .
Rg and Rh are relatively easy to determine using scat-
tering techniques. Both the Kirkwood-Riseman (K-R) ap-
proach [2–4] and more recent renormalization group (RG)
theory calculations [5,6] predict ρ to be independent of N
and independent of the particular polymer solvent com-
bination. For polymers in theta solvents, ρ is indeed ob-
served to be independent of N for sufficiently large poly-
mers. However, the experimental value varies somewhat
from system to system and differs from the values pre-
dicted by the K-R and RG theory. In good solvents the
experimental value of ρ increases with increasing N even
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for the largest polymers which have been measured up
to date. In good solvents flexible linear polymers are less
dense than in theta solvents and partial draining is more
important. In theta solvents the fractal dimension, D, is
2 while in good solvents it is 5/3 [7–9]. Experimentally,
D can be obtained from the dependence of Rg on N :

Rg ∝ N1/D or the scattering wave vector dependence of
the scattering intensity I ∝ q−D [10,12]. Experimentally,
Rh is observed to scale with N even in good solvents, but
with an exponent smaller than D which leads to a depen-
dence of ρ on N . Different possible causes for the observed
discrepancies are discussed in reference [1].

Relatively little attention is given to the dynamic prop-
erties of fractal objects in general, of which flexible linear
polymers are an example and aggregates of small parti-
cles [11] are an other. The structure of these particles
depends on the growth process, e.g. reaction controlled
cluster-cluster aggregation leads to objects with a frac-
tal dimension close to two, but has a different cutoff at
small and large scales than fractals formed by a random
walk [12]. Another important class of examples are par-
ticles formed by a percolation process close to the sol-gel
transition which have a fractal dimension of 2.5 [13]. In
general it is feasible that by some specific aggregation
process particles can be formed with any fractal dimen-
sion between 1 and 3. Here we introduce an approach to
calculate the friction of fractal objects. The emphasis is
however, still on polymers, and we verify that the hydro-
dynamic properties of our fractals are indeed very close
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to results for ρ obtained by Zimm [14] for the case where
D = 2. Hence, for concreteness we will, in the following,
use the term polymer even for these more general fractals.

The basic idea of our approach is to calculate friction
coefficients recursively for ever bigger chunks of space: If
the drag or friction of a representative element in space
is known, the drag of a collection of such chunks may be
computed by a recursion relation. In this way the friction
coefficient is obtained by mapping small scale information
to larger scale information. In this sense it is a renormal-
ization group approach – although it does not employ the
ε expansion-technique. Using this strategy we investigate
an approximation to the long range hydrodynamic inter-
actions which preserves the basic scaling with distance
but otherwise represents a discretization. This is achieved
by using an ultrametric distance instead of the standard
Euclidean one.

While ε-expansion techniques [5,6,15] (ε = 4−d, where
d is the spatial dimension) and the present model both be-
long within the same general conceptual framework, they
are distinctly different in the questions they address, their
theoretical structure and the level of mathematical com-
plexity. The present aim is not to add to the numerical
precision or sophistication of the ε-expansion methods,
but rather to add a new and conceptually simple tool to
understand scaling properties. The present relatively sim-
ple recursion scheme only addresses the pre-averaged case.
This is in contrast to the ε expansion techniques, which
must be employed to show that the pre-averaged results
receive corrections of order ε.

We compare the results of our approach with the K-
R model in the mean field approximation generalized for
objects with arbitrary fractal dimension. Good agreement
of the scaling properties of the friction coefficient and the
finite size correction of ρ is obtained. In particular the
finite size scaling results are consistent with previous cal-
culations done by Bernal et al. [16]. Bernal et al. found a
correction term scaling as M−1/2 in slight contrast to the
scaling M−0.4 which results from the present study in the
good solvent case.

From a numerical point of view it is of central interest
to investigate models that single out key aspects of the
underlying physics in order to simplify the computation.
Computer simulations like those of Zimm and de la Torre
et al. [14,17] have been successful in capturing the quan-
titative aspects of polymers in theta-solvents. These re-
sults and related numerical work [16,18,19] focus on con-
structing realistic polymer geometries using Monte-Carlo
simulations with a Lennard Jones potential. Compared to
these computational techniques the simulations based on
the present model ignores much of the hydrodynamic de-
tail and can therefore handle much larger systems.

The (standard) pre-averaging step performed in the
present model averages the Green’s function (the Oseen
tensor), which gives the hydrodynamic response to a point
force. However, the fluctuations resulting from the random
location of this point force are kept. This allows us to
study, at least qualitatively, the effect of density fluctua-
tions, which cannot be handled by mean field theories. We

show that within an ensemble of polymers characterized
by a given D, drag fluctuations are much larger among
dilute than among the dense polymers. For a given D the
variance of the drag is found to decrease exponentially
with mass.

Generally, it is clear that we can only address the scal-
ing properties since the prefactors depend on the internal
and external cutoff of the pair correlation function. These
quantities depend on the particular system and are in our
case determined by the way the fractals are generated in
the simulation. A crossover dimension D = 1 between the
non-draining and free draining regime is predicted. How-
ever, a more detailed description is needed to resolve the
magnitude of the partial draining through the fractal.

The paper is organized as follows: in Section 2 we
briefly review the K-R approach using the mean field
approximation extended to fractal objects in general. In
Section 3 we introduce the present ultrametric recursion
model and compare the results of numerical simulations
to the K-R theory. In Section 4 we discuss the effect of
density fluctuations.

2 The Kirkwood sum – a mean field result

In this section we review the standard Kirkwood-Riseman
theory for the drag on a single polymer and generalize it
to the case of an arbitrary fractal. We consider a rigid
polymer moving with a velocity v in a fluid which is at
rest at large distances from the polymer. One individual
monomer will exert a force on the fluid and perturb the
velocity field around all other monomers, giving rise to a
coupling between the frictional forces. When the Reynolds
number is small, a typical situation, the fluid flow is gov-
erned by the Stokes equations. Hence the problem is lin-
ear and the flow fields caused by each single monomer can
simply be added to give the total flow field.

Let ζ be the friction coefficient of the monomers, then
the force on the ith monomer is given by the Stokes law

fi = ζ(v −
∑
j 6=i

Tijfj) (1)

where the Oseen interaction tensor Tij gives the velocity
at the relative position rij resulting from a force fj at rj .
It has the form [20]

Tij =
1

8πηrij

[
I +

rij⊗ rij
r2
ij

]
(2)

where rij = ri − rj , η is the dynamic viscosity of
the solvent and I the unit tensor in three dimensions.
The Oseen tensor represents a good approximation when
inter-monomer distances are significantly larger than the
monomer diameter, i.e. the approximation will be well-
justified when the long range nature of the interactions
dominate short range effects.

If there are N monomers in the chain and we let v
be the translational velocity of the polymer, equation (1)
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yields 3N linear equations for the forces fi. The transla-
tional friction constant for the whole chain is then given
by the sum

Ξ =
1

v

N∑
i=1

fi ≡ 6πηRh. (3)

If we have strong hydrodynamic interactions, the flow ve-
locity around each monomer will be small and the left
hand side of equation (1) will be small compared to each
of the two terms on the right hand side. Hence, if the left
hand side is set to zero, the friction coefficient will drop
out of the equation and Ξ will be ζ independent. This
corresponds to the non-draining regime.

2.1 The Kirkwood-Riseman approximation

Kirkwood and Riseman simplified the above model by
replacing the interaction tensor in equation (1) by its
ensemble- and direction average, the pre-averaging ap-
proximation [2]. The complicated tensor problem is then
reduced to a scalar problem. If u is the relative velocity
between polymer and solvent, the scalar forces are related
by the Kirkwood-Riseman equations

fi = ζ

u− N∑
j 6=i

Gijfj

 (4)

where Gij is the pre-averaged Oseen tensor

Gij =
1

3
〈Tr(Tij)〉 =

〈
1

6πηrij

〉
· (5)

By solving a generalized diffusion equation, Kirkwood ob-
tained an approximate solution to the total friction coeffi-
cient [3]. However, applying a mean-field approach directly
to the linear equation (4) the same result is obtained. We
replace fj by its mean value 〈f〉 = F/N where F is the

total force F =
∑N
i=1 fi and so equation (4) becomes

fi = ζ

u− 〈f〉 N∑
j=1

Gij

. (6)

It is now straightforward to find the total force F . We
compute the sum of the fi in equation (6), solving for F
yields

F =
Nζu

1 + ζ
N

∑
i6=j Gij

(7)

where the sum in now over both i and j. When Gij is
given by the pre-averaged Oseen tensor in equation (5)
we find the Kirkwood double sum formula for the total
friction coefficient of the polymer Ξ = F/u

Ξ =
Nζ

1 + ζ
N

∑
i6=j〈

1
6πηrij

〉
· (8)

2.2 Kirkwood sum for an arbitrary fractal dimension

The original KR treatment considers Gaussian distributed
particle separations with variance |i − j|b2, this corre-
sponds to a fractal dimension D = 2. We use a simple
generalization of the Kirkwood double sum formula so as
to account for any fractal dimension.

For an arbitrary fractal the difference |i− j| is propor-
tional to the mass M between i and j [21]. If the fractal
has dimension D, the average length between i and j will
then be proportional to |i − j|1/D. This leads to the for-
mulas

R2
G = κ2b2 N2/D〈

1

rij

〉
=
λ

b

1

|i− j|1/D
(9)

where κ and λ are constants depending on the specific
distribution (which in turn depends on D). In writing the
last of the above relations it has been assumed that the
spatial monomer distribution is reasonable in the sense
that 〈rij〉〈1/rij〉 does not depend on 〈rij〉 for large sepa-
rations. This is true provided the distribution of lengths
rij goes to zero as rij → 0. This is certainly the case for
a Gaussian distribution peaked around 〈rij〉. Then κ = 1

and λ =
√

6/π.
The factors κ and λ depend on the shape of the pair

correlation function, i.e. the internal and external cutoff of
the fractal domain. As κ and λ depend differently on these
cutoff functions, ρK will not necessarily be the same for
objects with the same fractal dimension even if we consider
only geometrical properties. In a real system the external
cutoff will enter at some characteristic size close to Rg,
and the internal cutoff will enter at some length larger
than b [22]. Often a single exponential is taken to describe
the external density decay, but a random walk for instance
has a weaker cutoff and the cutoff of a self avoiding walk
is again different. In the simulation the cutoff at L has not
been characterized. The sum in equation (8) becomes∑

i,j

〈
1

rij
〉 =

λ

b

∑
i,j

1

|i− j|1/D
· (10)

Integration to obtain the asymptotic behavior gives the
new friction coefficient

Ξ =
3πηb(D − 1)(2D − 1)

λD2

N1/D

1 + b(D−1)(2D−1)
λ2D2ζ N (1/D)−1

(11)

to leading order in N−1. For large N the ρK(D) = RG/RH

ratio tends toward the constant

ρK =
2κλD2

(D − 1)(2D − 1)
· (12)

RG theory calculations to the first order in ε give the same
finite size scaling [5]. For finiteN the ratio ρK has the same
scaling factor as the last factor in equation (11). When
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D = 1 the Kirkwood sum becomes logarithmically diver-
gent and ρK depends on N . This simply means that an
extended chain (rod-like) displays logarithmic corrections
to the trivial Ξ = Nζ. The finite size scaling in equa-
tion (11) is a principal result which will reappear from
the recursion model. Note that only the correction term
which is proportional toN (1/D)−1, depends on the individ-
ual friction coefficient ζ. This again reflects non-drainage,
i.e. the screening that results from a long range Green’s
function.

In order to verify the scaling predicted in equation (11)
we carried out a conventional simulation of polymers in
good solvents. These were done by generating the poly-
mers as self avoiding random walks of D = 5/3, using
standard algorithms [23]. With all the monomer positions
given, the linear set of equations given by equation (1) was
then solved numerically for the fi’s, thus giving the drag
and ρ. It was observed that ρK indeed scaled linearly with
N1/D−1, as predicted by equation (11). These results are
consistent with those obtained by Bernal et al. [16], who
instead of the N1/D−1 scaling used the argument N−1/2.
However, the limited range of the data (the number of
monomers is between 5 and 50 in both Bernal and our
case) make a clear distinction between the two simulation
results impossible.

3 The hierarchical model

The understanding of self-similar systems with long-range
interaction (described by a Green’s function) is a gen-
eral problem. For instance, the determination of the elas-
tic properties of solids that have a fractal distribution of
cracks, is a problem that can be cast in this form [24]. The
above mentioned work by Kirkwood and Riseman which
was carried out long before the term fractal was invented,
represents another example.

The recursion model exploits the self similarity, i.e.
the scale invariance of the problem: the Green’s function
that describes the dynamic response of the fluid to a point
force, is a power law. Hence, in addition to the fractal
character of the polymer, the hydrodynamic interactions
themselves lack a characteristic scale.

3.1 Hierarchical fractal set

The recursion scheme that we shall use is based on an ul-
tradistance defined on our fractal structure. This distance
is described more closely in the next section. The two fig-
ures, Figures 1 and 2, show the deterministic and random
versions respectively of the fractals we will use to model
the polymer geometry.

The deterministic fractal can be constructed by an it-
eration procedure consisting in assembling small cells into
larger cells. We distribute k cubes of unit size on a d-
dimensional lattice with Nd sites. This we call the 1st
order hierarchical lattice, HL. It will have mass M = k
and size L = N . A HL of nth order consists of k (n− 1)th

Fig. 1. Deterministic hierarchical lattice with N = 2 and
k = 3. For this particular choice the fractal dimension is
D = log 3/ log 2 ≈ 1.58, and we get the famous Sierpienski
gasket.

Fig. 2. A stochastic hierarchical lattice with N = 2.

order HL. The total mass is M = kn and the size L = Nn,
hence M = LD, where D = log(k)/ log(N) is the fractal
dimension.

The same procedure may be used to construct a
stochastic fractal. A cube is occupied with probability p
and vacant with probability 1− p. Thus the average num-
ber of sub-units on each level becomes 〈k〉 = pNd and
average mass 〈M〉 = LD, where D is given by

D = d+
log(p)

log(N)
· (13)

The fractal dimension of the stochastic HL has the merit
of being continuously tunable, by simply choosing an ap-
propriate p-value. We also notice that there is a critical
probability pc = N−d where D = 0, when p < pc the
iteration process terminates since the average number of
particles within one cell is less than one.
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Fig. 3. Two-dimensional square lattice. To clarify the hier-
archical structure, we have artificially separated the different
generations. The structure shown here has a scale factorN = 2.
The distance used on top of this lattice is based on the hier-
archical structure. The distance between the two grey sites on
the figure is found by considering the smallest group (shown as
a dotted line) which contains both sites. The generation order
of this group (here n = 2) defines the distance r = Nn − 1
(r = 3 in this example).

3.2 Ultra metric distance

The hierarchical lattice is naturally endowed with a met-
ric structure which will constitute the essential brick of
our procedure. This distance is indeed directly constructed
from a coarse-graining of the structure, and is thus well
suited for a recursion approach.

The definition of the distance is illustrated in Figure 3.
We let the distance between two “monomers” i and j be
r(i, j) = Nn−1 − 1, where n is the order of the smallest
HL that contains both i and j. The generation n is the
number of coarse-graining steps necessary to merge the
two sites into a single unit. It is trivial to show that this
defines a distance in the mathematical sense. However,
this distance is particular. It displays a property stronger
than the “triangular” inequality: for any triplet of points i,
j and k, at least two of the three distances r(i, j), r(i, k)
and r(j, k) are equal. This property makes r an ultra-
distance.

3.3 Ultra metric interaction equations

The HL provides us with a self similar set of particles
with a tunable fractal dimension. We want to examine the
hydrodynamic interactions between these particles and
calculate the resulting friction coefficient. We assume a
scalar Green’s function G in the same spirit as in the
pre-averaging introduced by Kirkwood and Riseman. The
force, fi on one particle is then given by equation (4). Let
us note at this stage that the pre-averaging is not a com-
pulsory step in the process of computing the drag of a cube
from the drag of the sub-cubes. A full tensor interaction
could be considered in an elementary cell and then using

the similarity of the interaction term, the Green’s func-
tion could be extended in the entire space. This however
induces much more cumbersome algebra and little more
physics, thus we will in the present article solely focus on
this scalar approximation.

If the interaction only depends on the generation num-
ber n, the self similar structure can be exploited. This may
be achieved by introducing the ultra metric distance of the
previous section. We calculate the total friction coefficient,
ζin of the nth order HL in the ith cell and use this result
to find ζn+1 for the n+ 1 order cell. The key feature used
here in the ultrametric distance is the fact that the dis-
tance between any point inside a cell and a point outside
is the same. Therefore it is possible to coarse-grain the to-
tal friction since it contains all the necessary information
when computing the drag for all subsequent generations in
the construction of the self-similar structure. The Green’s
function will only depend on the generation number n,
and so the force on the ith cell in the (n + 1)th lattice is
given by

fi = ζin

u−G(n)
∑
j 6=i

fj

. (14)

We assume a Green’s function of the form

G(n) =
a

r(n)α
(15)

where r(n) = Nn−1−1 is the distance introduced in a pre-
vious section. In the following, we will be mostly interested
in the large scale properties of the system so that we will
approximate the distance by r(n) = Nn−1. The prefactor
a can be set to adjust to the monomer size. Comparing
with the pre-averaging form of the Oseen tensor, we set
α = 1 for the hydrodynamic case. It is again notewor-
thy that other values of α may arise in different contexts
where a similar formal approach can be developed, (such
as e.g. micro-cracks in an elastic matrix where α = d).

The friction coefficient on level n + 1 is ζn+1 =
1/u

∑
i fi. Hence,

fi = ζin (u−G(n)(uζn+1 − fi)). (16)

This equation can be solved for fi and the result can be
written in the form

fi

1−G(n)ζn+1
=

ζin u

1−G(n)ζin
· (17)

When summed over i the definition of ζn+1 gives

ζn+1

1−G(n)ζn+1
=
∑
i

ζin
1−G(n)ζin

· (18)

For the deterministic fractal all the coefficients ζin on a
given level are equal and the sum runs over ND non-zero
elements. The recursion relation can be written as

ζn+1 =
NDζn

1 + (ND − 1)G(n)ζn
· (19)
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Fig. 4. The inverse friction coefficient Ξ as multiplied by the
predicted asymptotic size dependence plotted against the pre-
dicted correction term L1−D.

We observe that 1/ζn+1 is the following simple first order
polynomial in 1/ζn

1

ζn+1
=

1

ζnND
+
ND − 1

ND
G(n)· (20)

This gives us the sum

1

ζn
=

1

ζNnD
+

(ND − 1)

NnD

n−1∑
m=0

NmDG(m) (21)

where ζ denotes the drag of the initial monomers. Using
the form of the Green’s function equation (15), the sum
appearing in equation (21) is a geometrical series, and the
scaling properties of ζ are obtained by evaluating the sum
and substituting L for Nn. We get the following mean
field expression for total friction coefficient Ξ = ζn

Ξ =
Lα

ND−1
ND−α−1

a+ ζ−1Lα−D
· (22)

When α = 1, i.e. the value required for the hydrody-
namic interactions studied here, the scaling properties of
this equation are exactly those of equation (11).

In Figure 4 the finite size scaling behavior of equa-
tion (22) are verified by the results of simulations. The
inverse drag L/Ξ is plotted against L1−D for various frac-
tal dimensions and d = 2, α = 1. In the simulations,
stochastic fractal sets were used along with the recur-
sion formula of equation (18). Linear behavior is observed
showing that the mean field result given by equation (22)
(with M = LD ) predicts the correct finite size scaling
for the random fractals. In every lattice realization the
friction coefficient was computed using the ultra-metric
Green’s function. Finally the results were averaged. We
stress that the simulation results are not mean field re-
sult but include directly the fluctuations corresponding to

0 2 4 6 8 10 12 14
n

1

10

100

1000

10000

100000

Ξ

Fig. 5. The triangles show the values of the total friction Ξ
calculated for the stochastic HL by use of the recursion rela-
tions. The data corresponds to lattice generation from n = 1
to n = 11 (i.e. for the latter the embedding lattice is of size
248 × 2048). The solid line shows the deterministic HL and
the corresponding mean field result. The fractal dimension is
D = 1.25, the interaction parameter is a = 0.2 and the number
of samples is 10000.

variations in the lattice geometries. All curves are straight
to a good approximation, allowing for the extrapolation
to obtain Ξ(L→∞).

In Figure 5 the drag resulting from deterministic frac-
tals is compared with the results from random fractals. In
both cases the recursion relation (18) is used. It is seen
that the drag computed from the fluctuating structures
is smaller than the drag resulting from the determinis-
tic ones. Physically this is due to the fact that in the
deterministic fractals the mass is more homogeneously dis-
tributed than in the random case. In an ordered homoge-
neous structure randomness can only increase the cluster-
ing of mass which in turn will decrease the drag. The mean
field result in equation (11) is exact for the deterministic
fractal. In the simulations D = 1.25. For larger D the dif-
ference between the deterministic fractal, or equivalently
the mean field result, and the random fractal are expected
to be smaller since in the non-draining regime the interior
holes created by fluctuations play a weaker role.

Are arbitrary fractal sets relevant models for real poly-
mers? As has been argued, this question reduces to a
question as to the effects of the cutoffs on the fractal do-
main. As a way to address it we calculated ρ for a ran-
dom hierarchical fractal in a the same way as was done by
Zimm [14]. This procedure allows for direct comparison.
We used a fractal of D = 2 in a three-dimensional space
and calculated the drag by means of the full Oseen ten-
sor, equation (2), using now the Euclidean metric. This
requires the solution of a linear set of 3N + 3 equations,
where N is the number of “monomers”. Hence, only the
geometry is kept from the renormalization scheme. In or-
der to get the asymptotic behavior results extrapolation
using the above finite size scaling results was necessary.
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The resulting asymptotic value of ρ = 1.26 is in strik-
ing agreement with the result of Zimm [14] who obtained
ρ = 1.28 for a connected random walk chain, and also with
the results of Freire et al. [18] who obtained ρ = 1.27 in
a model that included long range molecular interactions.
This shows that cutoff effects really do not make the ran-
dom fractal too unrealistic at D = 2.

For the fractal dimension D = 5/3 corresponding to
the good solvent case we did not succeed in getting the
necessary asymptotic values based on the full Euclidean
tensor calculations. The results indicate though that the
correspondence between the hierarchical geometry and the
more realistic geometries seems weaker. This suggests that
the finite size effects are much stronger for lower D down
to the critical dimension D = 1 below which a sensitivity
to the small scale structure of the medium survives in the
thermodynamic limit.

In equation (22), we note that the fractal dimension
D = α separates two distinct regimes. In the hydrody-
namic case of α = 1, and for a connected structure D > 1,
the inequality D > α always holds, and thus the hydrody-
namic drag is controlled by the radius of gyration of the
polymer. However, this is no longer true for disconnected
structures where the fractal dimension is less than 1. In
a different context, e.g. for interacting cracks in an elas-
tic medium, α = d and thus all structures are in the other
regime D < α. In this case it is more instructive to rewrite
equation (22) as

Ξ =
ζLD

1 + ND−1
ND−NαN

αaζLD−α
· (23)

We observe that now Ξ is proportional to the mass of the
fractal set and ζ. This can be interpreted as draining, the
flow penetrates the polymer, due to only partial screen-
ing the monomers acquire an effective friction coefficient
and the total friction coefficient of the polymer is just the
sum of these effective friction coefficients. For the realistic
case D > α, equation (22) depends on ζ only through the
correction term.

For hydrodynamic interactions α = 1 and, when
monomers are described as spheres, a ∼ 1/(6πη) and
so the friction coefficient obeys the scaling law Ξ ∼
6πηM1/D = 6πηL. We see that this is simply a Stokes
law, the polymer acquires a hydrodynamic radius RH ∼ L.
These results are in agreement with the results of the KR
theories where the friction force inside the polymer drops
to zero due to complete screening. We also note a dif-
ference in prefactors in the two regimes: in the draining
regime the prefactor depends on ζ, in the non-draining
regime this is not the case.

For the special case of D = α, the coefficient scales as

Ξ = ζM

(
1 +

aζ(ND − 1)

logN
logL

)−1

(24)

which means that there is only a logarithmic correction to
the mass-like scaling, from the interactions.

3.4 Continuous limit

In the previous sections we have worked in a discrete met-
ric space. The division of space was controlled by N . The
geometrical interpretation requires that this parameter is
an integer number N ≥ 2. However, the final expression
for the friction coefficient can be interpreted as a contin-
uous function of N . The formal limit N → 1+ restores
a continuous dilation invariance. Evaluating this limit for
equation (22) yields

Ξ =
ζM

1 + aζ D
D−α(M1−α/D − 1)

· (25)

We observe that this result is close to that obtained with
the mean field approach for polymer chains in Section 2.2.
Both theories predict the scaling with mass Ξ ∼ Mα/D

and the same scaling of correction term at small scale
Mα/D/Ξ ∼ const +Mα/D−1

It is also possible to compare prefactors. Using the
pre-averaged interaction G = 1/6πηr the asymptotic ex-
pression in the non-draining regime for the HL is

Ξ = 6πη(1−
α

D
)Mα/D (26)

while the mean field Kirkwood result from Section 2.2 is

Ξ = 6πηλ(2−
α

D
)(1−

α

D
)Mα/D (27)

where λ is a constant characteristic of the chain lengths
statistical distribution. For both theories the ratio α/D is
the relevant parameter and we also notice that the pref-
actor goes to zero as D approaches α from above. In the
HL calculations the lattice constant was set equal to unity
and in the mean field chain calculations the bond length
was set to unity. This does not amount to the same, so
the above two expressions are not directly comparable in
magnitude.

3.5 Kirkwood double sum for the HL structure

It is instructive to use the ultra metric distance in the
pre-averaged Kirkwood equation (4). The latter can be
considered as a mean field theory for scalar interactions
just as equation (14). In fact, since the directional aver-
ages are taken at the outset in both cases, the subsequent
approximations are indeed equivalent: the assumption of
a deterministic fractal (with the ultra metric distance) au-
tomatically leads to f = 〈f〉 everywhere. This is nothing
but the mean field average assumed in the derivation of
equation (4).

As a check we carry out the alternative derivation of
equation (11) by evaluating the Kirkwood double sum in
the hierarchical lattice. The total friction coefficient is

ΞDS =
Mζ

1 + aζ
M

∑
i6=j

1
rαij

(28)
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where M is the total mass, i.e. number of monomers. We
define S at level n as

Sn =
∑
i6=j

1

rαij
(29)

where the sum runs over all occupied sites of the total HL.
The sum on level n+ 1 is given by the sums on level n

Sn+1 =
Nd∑
i=1

qiS
i
n +

∑
i6=j

qiqjM
i
nM

j
n

1

rαn
(30)

where r(n) = Nn−1, q = 1 with probability p and q = 0
with probability 1 − p. The deterministic HL of n + 1 th
order consists of ND nth order HL and so the first sum
runs over ND elements, and the second over ND(ND−1)
and so

Sn+1 = NDSn +ND(ND − 1)N2nD 1

Nnα
· (31)

Hence,

Sn = NnD(ND − 1)
n−1∑
m=0

Nm(D−α) (32)

=
Nα(ND − 1)

ND −Nα
(Nn(D−α) − 1)NnD. (33)

Substituting this in equation (28) and n = log(L)/ log(N)
yields

ΞDS =
Lα

ND−1
ND−α−1 a+ ζ−1Lα−D

, (34)

which is equation (22). This result makes it explicit that
the mean field result is exact for the deterministic fractal.

4 Statistical distribution

As opposed to mean field descriptions such as the KR
model, the HL model allows for the study of fluctuation
effects. It is possible to study the correlation between the
friction coefficient and the (fluctuating) mass within lat-
tices of the same generation number n. The fluctuating
mass in these simulations corresponds, at least qualita-
tively, to size fluctuations caused by conformational poly-
dispersity in real flexible polymers or rigid self-similar
structures. In the previous section (see Fig. 5) we con-
sidered the relation between the friction coefficient and
the average mass at given generation numbers. Here we
shall consider the fluctuations in Ξ resulting from the
mass fluctuations. Figure 6 shows the result of simula-
tions with three different values of n and a mean value 〈k〉
corresponding to a fractal dimension D = 1.25. The simu-
lations were carried out on the basis of equation (18) and
used random fractals. The straight line going through the
three clusters of points in the figure shows that the scaling
of Ξ with the average mass is consistent with that shown
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Fig. 6. Joint distribution of friction coefficient Ξ versus mass
M for 6, 8, 10 generation lattices, 10 000 statistical realizations.
The fractal dimension is to D = 1.25. The dotted line has slope
1/D.

in Figure 5, i.e. that on the average Ξ ∝ L. For each of
the three n values the mass is seen to vary over one to two
orders of magnitude, corresponding to fluctuations in k at
each step in the generation of the HL. For a given n the
drag is seen to grow less with mass for large values of the
mass. Also, at high masses the clusters are seen to taper
off to the right. Physically this is caused by the fact that a
dense polymer will increase its drag less than a dilute one
upon addition of more mass. Correspondingly there will
be smaller fluctuations in the drag with mass at high den-
sities than at lower densities. This effect is quantified in
Figure 7 which shows the variance σχ = (〈Ξ2〉 − 〈Ξ〉2)/L
as a function of the reduced mass µ = M/LD, where M is
fluctuating and L = Nn is constant. We observe from the
figure that σχ ∝ exp(−anµ) where the number an seems
to increase weakly with D. Again, in the high density limit
the drag of any object with a given linear extension will be
insensitive to the removal of a small fraction of mass. For
this reason σχ is expected to vanish as µ increases. Hence,

when µ approaches its maximum value µmax = 2(2−D)n we
must have σχ = 0. However, it is not presently understood
why the decay of σχ is exponential.

5 Conclusion

We have introduced a hierarchical model for the compu-
tation of hydrodynamic properties of polymers modeled
as fractals and demonstrated the numerical efficiency of
this scheme. Although this model does not employ the
sophisticated ε-expansion technique it uses a hierarchical
renormalization technique in the sense that the results are
obtained by mapping small scale structure to larger scale
structure. The recursion relations with which this map-
ping is carried out has been solved exactly for determin-
istic fractal structures. We have shown that on the mean
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Fig. 7. Standard deviation σχ to reduced mass µ, χ =
Ξ/M1/D in a semi-log plot for fractal dimension D = 1.25
(sphere) and D = 1.5 (triangle).

field level the scaling aspects of this theory coincides with
a Kirkwood Riseman type theory for polymers of arbitrary
fractal dimension. The recursion relations of the hierarchi-
cal procedure based on the ultra metric can be used as a
general means of computing the drag of any mass distribu-
tion. Hence they can be used to study fractals where the
density fluctuations are tuned more systematically than
in the present context. This would be of interest for the
study of the level of drainage in polymers of smaller fractal
dimension where the fluctuation dependence is expected
to increase.

We have used the hierarchical model to compare the
drag of fluctuating and deterministic structures, and we
have used it to obtain the dependence of drag fluctuations
on density fluctuations.

In the pre-averaged KR theory the coupling between
vector components of the forces are totally neglected,
i.e. the non-diagonal terms of the Oseen tensor are set
to zero. It is possible that these terms may be taken
into account in the ultra metric distance construction,
leading to a set of coupled recursion relations. The
HL model permits the study of fluctuations in the
polymer drag for any distribution of polymer masses.
While the present study demonstrates the ability of
the HL model as a tool for studies of fluctuations
in Ξ, a more systematic study with more realistic
polymer mass histograms would be of great interest.
This, as well as a study of full vectorial interactions, is
likely to lead to further insight into the unsolved and

complicated problem of non pre-averaged hydrodynamic
interactions.
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